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Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Explain why you might need a "test double“ in your testing
• Understand how and when to apply different kinds of test “doubles” 

such as “mocks and spies”
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Testing Scopes Larger than Units
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“Integration” Tests Might be Larger
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Some Tests are Enormous
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Classify Tests by Size and Scope
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“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)



How big is my test?
• Small: run in a single thread, can’t sleep, perform I/O or 

making blocking calls
• Medium: run on single computer, can use 

processes/threads, perform I/O, but only contact 
localhost

• Large: Everything else
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From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

Testing Distribution (How much of each kind 
of testing we should do?)
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• Database component
• Contents may need to reflect/simulate real-world;
• Data may be expensive/proprietary/confidential.

• Network connections
• ”Real” connections may be slow/flaky/disrupted;
• Resources may have changed since test was written.

• Environment
• Interactions with OS, locale or other software.

• Human actors
• Ultimately unpredictable.

• Specification ambiguity
• Large systems -> many behaviors/interactions to consider

Large Systems are Hard to Test
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Test Doubles replace uncontrollable 
pieces of the environment
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Mo

What are Test Doubles?
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When to use Test Doubles?
• To create “small” tests that are faster and less flaky

• Example: Testing a unit that processes result of an 
external API call; only interested in testing what 
happens after the external call returns

• When the real thing is unavailable
• Example: Integrating with external vendors

• When testing for unusual or exceptional cases that are 
hard to make happen in practice
• Example: when external service fails in the middle of a 

transaction
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Test Doubles Intercept Calls to Methods
• Testing frameworks provide two common abstractions for doubles

• Transparently modifies programs while running to intercept calls
• Spies invoke the original method, but record the parameters and call 

information
• Mocks do not invoke the original method

• Default is to provide canned responses (Jest picks: undefined)
• Also can provide a mock implementation to entirely replace the 

original method
• Other frameworks use terms like “fake” and “stub” for variants of these; 

we focus on Jest’s features (spies, mocks)
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Test Spy is a stub that remembers how the 
object was called
• Test can check what happened earlier;

• For example: a particular method should be called
1. First with parameters “foo” and 42;
2. Then with parameters “quux” and -88.

• A spy can be useful in conjunction with the “real” 
environment:
• What was sent on the network?
• How many times a problem was logged?
• What was inserted in the database?
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Example: Test Spies in IP2
• useConversationAreaOccupants should call the method addListener when 

rendered, and on cleanup, call removeListener with the same exact argument
• Our test for this requirement uses two spies to inspect calls to these methods
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beforeEach(() => {
conversationAreaController = new ConversationAreaController(nanoid(), nanoid());
addListenerSpy = jest.spyOn(conversationAreaController, 'addListener');
removeListenerSpy = jest.spyOn(conversationAreaController, 'removeListener');

});

Before each test: create a ConversationAreaController to test with the hook, spy on its 
addListener and removeListener methods

it('Removes its update listener when the component unmounts', () => {
const listenerAdded = getSingleListenerAdded('occupantsChange');
cleanup();
const listenerRemoved = getSingleListenerRemoved('occupantsChange');
expect(listenerAdded).toBe(listenerRemoved);

});

Test that the listener added is the exact same listener removed, getSingleListenerAdded/removed 
uses spy.mock.calls to find the arguments passed to addListener



Test Mock is a Double that has Scripted 
results
• A test mock has scripted results:

• If such-and-such a method is called
• return some particular value.

• A complex mock can have many scripts:
• Multiple methods;
• Different results for subsequent calls.

• Useful mocking assumes we know how mocked 
object will be used.

• Jest’s default behavior is to return “undefined”, we 
can modify this
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Jest supports Mocks

17

You will see more of 
these in IP2

const mockTwilioVideo = mockDeep<TwilioVideo>();
jest.spyOn(TwilioVideo, 'getInstance').mockReturnValue(mockTwilioVideo);

• Replacing TwilioVideo with Mock

• Jest Tests can be written
it('should use the coveyTownID and player ID properties when requesting a video token',

async () => {

const townName = `FriendlyNameTest-${nanoid()}`;

const townController = new CoveyTownController(townName, false);

const newPlayerSession = await townController.addPlayer(new Player(nanoid()));

expect(mockTwilioVideo.getTokenForTown).toBeCalledTimes(1);

expect(mockTwilioVideo.getTokenForTown).toBeCalledWith(townController.coveyTownID, newPlayerSession.player.id);

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

https://jestjs.io/docs/mock-function-api


Here is another Example of Mock /1
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describe('conversationAreaCreateHandler', () => {

const mockCoveyTownStore = mock<CoveyTownsStore>();

const mockCoveyTownController = mock<CoveyTownController>();

beforeAll(() => {

// Set up a spy for CoveyTownsStore that will always return our mockCoveyTownsStore as the 
singleton instance

jest.spyOn(CoveyTownsStore, 'getInstance').mockReturnValue(mockCoveyTownStore);

});

beforeEach(() => {

// Reset all mock calls, and ensure that getControllerForTown will always return the same mock 
controller

mockReset(mockCoveyTownController);

mockReset(mockCoveyTownStore);

mockCoveyTownStore.getControllerForTown.mockReturnValue(mockCoveyTownController);

});

. . . . 

spying on 
getInstance() 

method



Here is another Example of Mock /2
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. . . . 

it('Checks for a valid session token before creating a conversation area', ()=>{

const coveyTownID = nanoid();

const conversationArea :ServerConversationArea = { boundingBox: { height: 1, width: 1, x:1, y:1 }, label: nanoid(), 
occupantsByID: [], topic: nanoid() };

const invalidSessionToken = nanoid();

// Make sure to return 'undefined' regardless of what session token is passed

mockCoveyTownController.getSessionByToken.mockReturnValueOnce(undefined);

requestHandlers.conversationAreaCreateHandler({

conversationArea,

coveyTownID,

sessionToken: invalidSessionToken,

});

expect(mockCoveyTownController.getSessionByToken).toBeCalledWith(invalidSessionToken);

expect(mockCoveyTownController.addConversationArea).not.toHaveBeenCalled(); 

});

});

If SessionToken is invalid, don’t call 
addConversationArea()



Supply Implementation to Mocks to Simulate 
Behaviors
• Sometimes called a fake, these mocks have an 

implementation of the object being replaced
• A low-fidelity fake implements things partially

• Enough to work for the test.
• A high-fidelity fake implements most aspects:

• Usually all functional aspects;
• Usually not as efficiently or as scalable.

• The purpose of this mock is to avoid 
processes/network/cost, but still perform some 
activities

• Create fakes in Jest with mock.mockImplementation(…)
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Testing Large Systems is Hard
• What to do if the specification is incomplete, and likely to 

change frequently?
• Writing thorough test suite is even harder, less useful

• Still: vital to detect breaking changes
• Examples:

• Detailed layout of GUIs
• Side-effects of APIs, particularly under corner-cases
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Snapshot GUI Tests Detect Changes
• The first time the test runs, it saves a “snapshot” of 

the rendered GUI
• Subsequent runs will fail if the snapshot changes
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import renderer from 'react-test-renderer';
import Link from '../Link';

it('renders correctly', () => {
const tree = renderer

.create(<Link 
page="http://www.facebook.com">Facebook</Li
nk>)

.toJSON();
expect(tree).toMatchSnapshot();

});



Capture/Replay of API Traffic Detects 
Breaking Changes
• Record the API requests and responses that clients 

make
• Test new versions of the API by identifying requests 

that result in different responses (“breaking 
changes”)

23https://www.tradeweb.com/our-markets/data--reporting/replay-service/
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Test Doubles Have Weaknesses
• Some failures may occur purely at the integration 

between components:
• The test may assume wrong behavior (wrongly encoded 

by mock)
• Higher fidelity mocks (e.g. capture/replay) can help, but 

still just a snapshot of the real world

• The SUT may use a different algorithm:
• The Spies expect a particular usage of double;
• The test is “brittle” because it depends on internal 

behavior of SUT;

• Potential maintenance burden: as SUT evolves, 
mocks must evolve
• Capture/replay is a bit less, at least…
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Review: Learning Objectives for this Lesson
• You should now be able to:

• Explain why you might need a "test double“ in your testing
• Understand how and when to apply different kinds of test “doubles” 

such as “mocks and spies”

• For Further Reading
• Check out Martin Fowler’s article, 

“Mocks Aren’t Stubs” https://martinfowler.com/articles/mocksArentStubs.html
• “xUnit Test Patterns: Refactoring Test Code” by Gerard Meszaros
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