
CS 4530: Fundamentals of Software Engineering

Module 12: Designing Tests for Large Systems

Jonathan Bell, Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

1

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Objectives for this Lesson
• By the end of this lesson, you should be able to:

• Explain why you might need a "test double“ in your testing
• Understand how and when to apply different kinds of test “doubles”

such as “mocks and spies”

2

Testing Scopes Larger than Units

3

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

“Integration” Tests Might be Larger

4

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

Some Tests are Enormous

5

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in the
entire Google

ecosystem

Classify Tests by Size and Scope

6

1 class of one program
running on a web

server

1 process running on a
web server

Mork

UnitIntegration

1 web server in a
cluster of 100,000

1 Google product in the
entire Google

ecosystem

“Small”“Medium”

“Large”

“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

How big is my test?
• Small: run in a single thread, can’t sleep, perform I/O or

making blocking calls
• Medium: run on single computer, can use

processes/threads, perform I/O, but only contact
localhost

• Large: Everything else

7“Software Engineering at Google: Lessons Learned from Programming Over Time,” Wright, Winters and Manshreck, 2020 (O’Reilly)

From SoftEng @ Google Chapter 11
• https://learning.oreilly.com/library/view/software-engineering-

Testing Distribution (How much of each kind
of testing we should do?)

8

Pyramid
Test Pattern

• Database component
• Contents may need to reflect/simulate real-world;
• Data may be expensive/proprietary/confidential.

• Network connections
• ”Real” connections may be slow/flaky/disrupted;
• Resources may have changed since test was written.

• Environment
• Interactions with OS, locale or other software.

• Human actors
• Ultimately unpredictable.

• Specification ambiguity
• Large systems -> many behaviors/interactions to consider

Large Systems are Hard to Test

9

Mo

Test Doubles replace uncontrollable
pieces of the environment

10

Network
Resources

Database

Business
Logic

Mock network

Fake Database

Random user

Mo

What are Test Doubles?

11

Network
Resources

Database

Business
Logic

Mock network

Fake Database

Random user

Test DoubleTest Double

Test Double

When to use Test Doubles?
• To create “small” tests that are faster and less flaky

• Example: Testing a unit that processes result of an
external API call; only interested in testing what
happens after the external call returns

• When the real thing is unavailable
• Example: Integrating with external vendors

• When testing for unusual or exceptional cases that are
hard to make happen in practice
• Example: when external service fails in the middle of a

transaction

12

Test Doubles Intercept Calls to Methods
• Testing frameworks provide two common abstractions for doubles

• Transparently modifies programs while running to intercept calls
• Spies invoke the original method, but record the parameters and call

information
• Mocks do not invoke the original method

• Default is to provide canned responses (Jest picks: undefined)
• Also can provide a mock implementation to entirely replace the

original method
• Other frameworks use terms like “fake” and “stub” for variants of these;

we focus on Jest’s features (spies, mocks)

13

Test Spy is a stub that remembers how the
object was called
• Test can check what happened earlier;

• For example: a particular method should be called
1. First with parameters “foo” and 42;
2. Then with parameters “quux” and -88.

• A spy can be useful in conjunction with the “real”
environment:
• What was sent on the network?
• How many times a problem was logged?
• What was inserted in the database?

14

Spy
“remembers”

Example: Test Spies in IP2
• useConversationAreaOccupants should call the method addListener when

rendered, and on cleanup, call removeListener with the same exact argument
• Our test for this requirement uses two spies to inspect calls to these methods

15

beforeEach(() => {
conversationAreaController = new ConversationAreaController(nanoid(), nanoid());
addListenerSpy = jest.spyOn(conversationAreaController, 'addListener');
removeListenerSpy = jest.spyOn(conversationAreaController, 'removeListener');

});

Before each test: create a ConversationAreaController to test with the hook, spy on its
addListener and removeListener methods

it('Removes its update listener when the component unmounts', () => {
const listenerAdded = getSingleListenerAdded('occupantsChange');
cleanup();
const listenerRemoved = getSingleListenerRemoved('occupantsChange');
expect(listenerAdded).toBe(listenerRemoved);

});

Test that the listener added is the exact same listener removed, getSingleListenerAdded/removed
uses spy.mock.calls to find the arguments passed to addListener

Test Mock is a Double that has Scripted
results
• A test mock has scripted results:

• If such-and-such a method is called
• return some particular value.

• A complex mock can have many scripts:
• Multiple methods;
• Different results for subsequent calls.

• Useful mocking assumes we know how mocked
object will be used.

• Jest’s default behavior is to return “undefined”, we
can modify this

16

Mock has “scripted
answers” and is

used for “behavior
verification”

Jest supports Mocks

17

You will see more of
these in IP2

const mockTwilioVideo = mockDeep<TwilioVideo>();
jest.spyOn(TwilioVideo, 'getInstance').mockReturnValue(mockTwilioVideo);

• Replacing TwilioVideo with Mock

• Jest Tests can be written
it('should use the coveyTownID and player ID properties when requesting a video token',

async () => {

const townName = `FriendlyNameTest-${nanoid()}`;

const townController = new CoveyTownController(townName, false);

const newPlayerSession = await townController.addPlayer(new Player(nanoid()));

expect(mockTwilioVideo.getTokenForTown).toBeCalledTimes(1);

expect(mockTwilioVideo.getTokenForTown).toBeCalledWith(townController.coveyTownID, newPlayerSession.player.id);

});

Jest’s Mock API: https://jestjs.io/docs/mock-function-api

https://jestjs.io/docs/mock-function-api

Here is another Example of Mock /1

18

describe('conversationAreaCreateHandler', () => {

const mockCoveyTownStore = mock<CoveyTownsStore>();

const mockCoveyTownController = mock<CoveyTownController>();

beforeAll(() => {

// Set up a spy for CoveyTownsStore that will always return our mockCoveyTownsStore as the
singleton instance

jest.spyOn(CoveyTownsStore, 'getInstance').mockReturnValue(mockCoveyTownStore);

});

beforeEach(() => {

// Reset all mock calls, and ensure that getControllerForTown will always return the same mock
controller

mockReset(mockCoveyTownController);

mockReset(mockCoveyTownStore);

mockCoveyTownStore.getControllerForTown.mockReturnValue(mockCoveyTownController);

});

. . . .

spying on
getInstance()

method

Here is another Example of Mock /2

19

. . . .

it('Checks for a valid session token before creating a conversation area', ()=>{

const coveyTownID = nanoid();

const conversationArea :ServerConversationArea = { boundingBox: { height: 1, width: 1, x:1, y:1 }, label: nanoid(),
occupantsByID: [], topic: nanoid() };

const invalidSessionToken = nanoid();

// Make sure to return 'undefined' regardless of what session token is passed

mockCoveyTownController.getSessionByToken.mockReturnValueOnce(undefined);

requestHandlers.conversationAreaCreateHandler({

conversationArea,

coveyTownID,

sessionToken: invalidSessionToken,

});

expect(mockCoveyTownController.getSessionByToken).toBeCalledWith(invalidSessionToken);

expect(mockCoveyTownController.addConversationArea).not.toHaveBeenCalled();

});

});

If SessionToken is invalid, don’t call
addConversationArea()

Supply Implementation to Mocks to Simulate
Behaviors
• Sometimes called a fake, these mocks have an

implementation of the object being replaced
• A low-fidelity fake implements things partially

• Enough to work for the test.
• A high-fidelity fake implements most aspects:

• Usually all functional aspects;
• Usually not as efficiently or as scalable.

• The purpose of this mock is to avoid
processes/network/cost, but still perform some
activities

• Create fakes in Jest with mock.mockImplementation(…)

20

Fake has
“semi-real

implementation”

Testing Large Systems is Hard
• What to do if the specification is incomplete, and likely to

change frequently?
• Writing thorough test suite is even harder, less useful

• Still: vital to detect breaking changes
• Examples:

• Detailed layout of GUIs
• Side-effects of APIs, particularly under corner-cases

21

Snapshot GUI Tests Detect Changes
• The first time the test runs, it saves a “snapshot” of

the rendered GUI
• Subsequent runs will fail if the snapshot changes

22

import renderer from 'react-test-renderer';
import Link from '../Link';

it('renders correctly', () => {
const tree = renderer

.create(<Link
page="http://www.facebook.com">Facebook</Li
nk>)

.toJSON();
expect(tree).toMatchSnapshot();

});

Capture/Replay of API Traffic Detects
Breaking Changes
• Record the API requests and responses that clients

make
• Test new versions of the API by identifying requests

that result in different responses (“breaking
changes”)

23https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Current version
of API

Next version of
API

Clients (created
by many third

parties)

Capture/Replay
Proxy for
Testing

Production traffic

Production traffic

Replay production
traffic for testing

https://www.tradeweb.com/our-markets/data--reporting/replay-service/

Test Doubles Have Weaknesses
• Some failures may occur purely at the integration

between components:
• The test may assume wrong behavior (wrongly encoded

by mock)
• Higher fidelity mocks (e.g. capture/replay) can help, but

still just a snapshot of the real world

• The SUT may use a different algorithm:
• The Spies expect a particular usage of double;
• The test is “brittle” because it depends on internal

behavior of SUT;

• Potential maintenance burden: as SUT evolves,
mocks must evolve
• Capture/replay is a bit less, at least…

24

Review: Learning Objectives for this Lesson
• You should now be able to:

• Explain why you might need a "test double“ in your testing
• Understand how and when to apply different kinds of test “doubles”

such as “mocks and spies”

• For Further Reading
• Check out Martin Fowler’s article,

“Mocks Aren’t Stubs” https://martinfowler.com/articles/mocksArentStubs.html
• “xUnit Test Patterns: Refactoring Test Code” by Gerard Meszaros

25

https://martinfowler.com/articles/mocksArentStubs.html

	CS 4530: Fundamentals of Software Engineering��Module 12: Designing Tests for Large Systems
	Learning Objectives for this Lesson
	Testing Scopes Larger than Units
	“Integration” Tests Might be Larger
	Some Tests are Enormous
	Classify Tests by Size and Scope
	How big is my test?
	Testing Distribution (How much of each kind of testing we should do?)
	Large Systems are Hard to Test
	Test Doubles replace uncontrollable pieces of the environment
	What are Test Doubles?
	When to use Test Doubles?
	Test Doubles Intercept Calls to Methods
	Test Spy is a stub that remembers how the object was called
	Example: Test Spies in IP2
	Test Mock is a Double that has Scripted results
	Jest supports Mocks
	Here is another Example of Mock /1
	Here is another Example of Mock /2
	Supply Implementation to Mocks to Simulate Behaviors
	Testing Large Systems is Hard
	Snapshot GUI Tests Detect Changes
	Capture/Replay of API Traffic Detects Breaking Changes
	Test Doubles Have Weaknesses
	Review: Learning Objectives for this Lesson

